主页 > 人民日报海外版 > 第八版 中华文物 2002年09月30日
中国古代数学成就之十二
宋元数学的进展(科技史话)

    王诗宗

    宋元两代,我国古代数学在汉唐基础上又有了发展,涌现了秦九韶、李冶、杨辉、朱世杰四大数学家。
    秦九韶,四川普州(今安岳县)人,主要著作是南宋理宗淳七年(1247年)完成的《数书九章》,全书共18卷,81个问题。书中有一个著名的“遥测圆城”的问题,这个问题给出了一个圆形外围的直角三角形的某些条件,求圆的直径。秦九韶列出了一个十次方程来解决这个问题,并且提出了高次方程的数值解法———“正负开方术”。秦九韶还提出了联立一次同余式的解法———“大衍求一术”。秦九韶的大衍求一术,将“物不知数”问题推广为一般同余式组解法,实现了理论上的飞跃。
    李冶,真定栾城(今河北栾城)人。代表作为《测圆海镜》,该书共12卷,170问,都是有关已知直角三角形中某些线段,求内切圆和旁切圆直径的。该书看似几何书,却叙述了一种普遍的列写代数方程的方法,即“天元术”。天元术引入了代表未知数的符号,于是任意的数学高次方程都可以表示为与近代数学一致的普遍形式。李冶还掌握了将分式方程化为整式方程的方法。
    杨辉,浙江钱塘(今杭州)人。主要著有《详解九章算法》、《日用算法》、《乘除通变算宝》、《田亩比类乘除捷法》等。杨辉受沈括将堆积的酒坛类比于层坛体积的做法启示,正式提出了“比类”一词(即“比照类推”),并在《详解九章算法》的“商功”部分中,分别将隅垛、方垛、三角垛与《九章算术》中的方锥、方亭、鳖相比类,得到了几个重要的多阶等差级数公式。杨辉的著作中还介绍了许多他人的数学成果,例如改革筹算乘除运算的“以加代乘”法和“以减代除”法,以及当时的一些乘法口诀。最为重要的是,他记录了北宋数学家贾宪的一个三角数表。这个数表实际上就是二项式展开的系数表,(a+b)2、(a+b)3的展开各项系数均可以在数表的第三四行找到。这个表通常被称做“杨辉三角”,它完全等同于法国数学家帕斯卡1653年提出的“帕斯卡三角”。由于该数表有丰富的数学内涵,所以至今仍为人们所重视。
    四大名家中,朱世杰堪称一位集大成者。朱世杰,字汉卿,燕山(今北京一带)人。在14世纪初,他将解一个未知数方程的天元术,发展成了有四个未知数的方程组的解法———四元术;他还将三角垛的公式引用到招差术中,得到包含四次差的招差公式,并且可以推广到任意高次。朱世杰对球体表面积问题也作过探讨,虽然未成功,却是中国数学史上惟一一次探讨这一问题。可以说,他将中国古代数学推上了一个前所未有的高峰。
    秦、李、杨、朱四大名家的数学成果,诸如正负开方术、天元术、四元术、大衍求一术、垛积术和招差术,都是具有开创意义的数学成就,西方类似成就的出现要晚数百年。宋元时期,是我国传统数学的一个黄金时期。    
    《人民日报海外版》 (2002年09月30日第八版)

到BBS交流 写信谈感想

  主页 > 人民日报海外版 > 第八版 中华文物

镜像:美国 日本 教育网 科技网
关于我们 帮助信息 本站导航 广告服务 联系我们 招聘信息 京ICP证000006号
人 民 日 报 社 版 权 所 有 ,未 经 书 面 授 权 禁 止 复 制 或 建 立 镜 像